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Abstract 

A computational model of a crystal consists of a 
description of the crystal structure, expressions for 
calculating the energy of the model in terms of this 
structure, and a way of minimizing this calculated 
energy with respect to the structural variables. Exter- 
nal forces such as hydrostatic pressure, normal and 
shearing stresses, or electric fields can be simulated 
by adding a term to the energy which describes the 
external energy of the force-producing device. 
Minimizing the total energy produces a structure dis- 
torted by the external force. From the calculated 
distortion it is possible to obtain the complete elastic 
tensor and the dielectric and piezoelectric constants 
of the crystal. Some phase changes can be simulated, 
and it should be possible to induce ferroelastic or 
ferroelectric transitions in the model. The effect of 
these forces on the orientation and conformation of 
molecules in the crystal can also be computed. 

Introduction 

In recent years, computational models of crystal 
structures have been used extensively to interpret and 
predict the molecular or atomic arrangements and 
some properties of crystalline materials. Work on 
molecular crystals has been summarized by 
Timofeeva, Chernikova & Zorkii (1980). (See, for 
example, Warshel & Lifson, 1970; Kitaigorodsky, 
1973 ; Momany, Carruthers & Scheraga, 1974; Gavez- 
zotti & Simonetta, 1975; Williams & Starr, 1977; 
Taddei, Righini & Manzelli, 1977; Busing, 1982, 
1983.) Examples of the application of these methods 
to inorganic crystals go back to Born & Mayer (1932) 
and include publications by Tosi & Fumi (1964), 
Slaughter (1966), Busing (1970, 1972a), Ohashi & 
Burnham (1972), Giese & Datta (1973), Catlow & 
Norgett (1973), Yuen, Murfitt & Collin (1974), Brown 
& Fenn (1979), Miyamoto & Takeda (1980), Matsui 
& Watanab~ ( 1981 ), Matsui & Matsumoto (1982) and 
Catlow & Parker (1982). 

* Research sponsored by the Division of Materials Sciences, 
Office of Basic Energy Sciences, US Department of Energy, under 
contract W-7405-eng-26 with the Union Carbide Corporation. 
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Computer  programs which are available for this 
kind of calculation include PCK5 and PCK6 (Wil- 
liams, 1969, 1972, 1979), QCFF/PI  and MCA (War- 
shel & Levitt, 1982; Huler, Sharon & Warshel, 1977; 
Warshel, 1977), W M I N  (Busing, 1972b, 1981) and 
PLUTO and METAPOCS (Catlow & Mackrodt, 
1982). 

The purpose of this paper is to describe a simple 
way of simulating the application of external forces 
to a computational crystal model. Such forces could 
be hydrostatic pressure, normal or shearing stresses, 
electric fields, or any combination of these. By 
examining the way in which the model responds to 
these forces we can compute its elastic constants, 
static dielectric constants, and piezoelectric constants. 
The structure at high pressures can be simulated, as 
can certain kinds of phase changes and ferroelastic 
or ferroelectric transitions. The effect of external 
forces on the orientation and conformation of 
molecules in crystals can be predicted. Other ways 
of computing the elastic tensor and the piezoelectric 
and dielectric constants of a crystal have been 
described (see, for example, Weidner & Simmons, 
1972; Catlow & Norgett, 1973; Catlow & Mackrodt, 
1982), but these, in general, do not involve the appli- 
cation of finite forces or fields. 

Computational models 

A computational model of a crystal includes a 
description of the structure and a procedure for calcu- 
lating the potential energy as a function of that struc- 
ture. The description includes the lattice parameters, 
the coordinates of the atoms in one asymmetric unit, 
and the symmetry operations which can be used to 
generate the entire structure. 

The energy calculation often uses the a tom-atom 
approximation to calculate the nonbonded energy per 
formula unit as 

one all 
cell cells 

1 ~ ~ V(ro). (1) W.o~ - 2Z 
i j 

Here j is restricted to select atoms not bonded to 
atom i, r 0 is the distance between these atoms, and 
Z is the number of formula units per cell. The factor 
of one half is needed because, in an infinite crystal, 

0108-7673/84/050532-07501.50 O 1984 International Union of Crystallography 



WILLIAM R. BUSING AND MASANORI MATSUI 533 

each distance would otherwise be included twice. The 
nonbonded potential V ( r  o) is often written 

V(ro)  = qiqjr~ I - A r ~  6 + B exp ( -  Cr0), (2) 

where the terms represent Coulomb, van der Waals 
and repulsion energy, respectively. The atomic 
charges q, and the coefficients A, B and C, which 
depend on the kinds of atoms involved, are known 
as the nonbonded energy parameters. 

When molecules are treated as flexible groups it 
is necessary to include terms representing the 
intramolecular energy in some form such as 

V(r) = (kr/2) ( r -  ro) 2, (3) 

V ( a ) = ( k ~ / 2 ) ( a - a o )  2, (4) 

V ( ~ o ) = ( E , / 2 ) (  l ± c o s  n~o). (5) 

Here r is a bond distance, a is a bond angle, and 
is a torsion angle. The energy parameters include the 
force constants kr and k~, the unstrained values ro 
and ao, and the n-fold barrier to torsion E,. Some 
models may include additional energy terms, such as 
the internal energy of polarization for a shell model, 
for example. 

The computational model is completed by adjust- 
ing the structural variables to minimize the calculated 
energy. This is therefore a static model in which the 
effects of thermal motion are absorbed in the form 
of the potential. Normal modes of vibration can be 
calculated for the structure, but the pseudorandom 
motion of individual atoms which can be obtained 
by molecular dynamics or Monte Carlo techniques 
does not appear. 

The structural variables to be adjusted are just those 
which would be refined in a crystal-structure determi- 
nation. They include from one to six lattice para- 
meters, depending on the symmetry. There may be 
three coordinates per atom or fewer for atoms in 
special positions. Alternatively, molecules may be 
treated as rigid or segmented with up to three transla- 
tions and three rotations per rigid group. 

The starting values of these parameters are often 
taken as their experimental values. Alternatively, they 
may be chosen to represent a postulated arrangement. 
Usually only a local minimum in energy is sought, 
and there is no guarantee that there may not be other 
quite different structures with lower calculated 
energies. 

When the starting structure is near the desired 
energy minimum, the Newton-Raphson method is an 
efficient adjustment technique. The equations to be 
solved are 

D Ap=-d ,  (6) 

where p~ is a structural parameter, d~ = a W/ap~,  and 
D o = a 2 W/ap~ apt. Because the derivatives d~ are non- 
linear in the pi's, a few iterations are required to bring 
the structure to the point where the d~'s are zero. This 

may be the desired energy minimum, but, in fact, the 
Newton-Raphson method will converge to a 
maximum or a saddle point as readily as to a 
minimum. The answer can be checked, however, by 
examining the eigenvalues of D; at a minimum these 
will all be positive. 

If the trial structure is too far from the energy 
minimum, the Newton-Raphson method will fail, 
and it is necessary to use some other technique, such 
as the method of steepest descents, which requires 
only the first derivatives O W/Opi,  or search pro- 
cedures, which require no derivatives. These include 
a method devised by Rosenbrock (1960) and the 
Simplex method of Nelder & Mead (1965). These 
techniques are slower than the Newton-Raphson 
method, but they invariably proceed to lower calcu- 
lated energies. 

Simulating hydrostatic pressure 

Two ways of including the effects of hydrostatic pres- 
sure in the computational modeling of crystals have 
been reported. One method, used by Miyamoto & 
Takeda (1980) and also by Parker (1983), is simply 
to fix the lattice parameters at values determined 
experimentally at high pressures. The remaining 
structural parameters can then be computed from the 
model. The other method, reported by Hall & Wil- 
liams (1975) and corrected by Hall, Start, Williams 
& Wood (1980), adjusts the entire structural model, 
including the lattice parameters. Pressure is simulated 
by adjusting the structure until the derivatives of the 
energy with respect to the cell edges acquire specified 
negative values which are proportional to the applied 
pressure. 

The procedure to be described here is equivalent 
to the latter method, but instead of requiring the 
derivatives to take non-zero values, we simply add 
an extra term, Wext, to the energy, where Wext is the 
external energy of the force-producing device. Fig. 1 
shows a schematic way of applying pressure to a 
crystal. The weight of mass m rests on a piston of 
area A which applies pressure to the crystal by means 
of an incompressible fluid. As the crystal contracts 
by an amount Av = A Ah, the potential energy of the 
mass becomes less. The external energy change is 

W'~xt = m g  Ah  = ( m g / A ) A  Ah = P A y ,  (7) 

where P is the pressure. Note that both Ah and Av 
are negative quantities. The external energy per for- 
mula unit is then 

W~xt= P A V / Z ,  (8) 

where V is the cell volume and Z is the number of 
formula units per cell. The effect of pressure is intro- 
duced by minimizing Wtotab the energy of the entire 
system, crystal and force-producing device, 

Wtota I = Wcryst q- Wex t. (9) 
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The terms in (9) are illustrated in Fig. 2, where energy 
W is plotted against  cell volume V. W c r y s t  is a typical 
potential  curve at zero pressure with a min imum at 
the equil ibrium cell volume, Vo. Wext is a straight-line 
plot of  (8) with a slope proport ional  to P. Wtotal, the 
sum of  these two curves, is the energy of  the system, 
and its min imum is at a new cell volume smaller  than 
V0 by A V. [A referee notes that the same procedure  
for s imulat ing hydrostat ic  pressures was used by 
Muhlhausen  & G o r d o n  (1981).] 

For example,  to apply a pressure using program 
W M I N  (Busing, 1981, p. 42) the user simply writes 
a subrout ine to compute  the external energy term 

We,,, = CP(  V -  Vo)l Z. (10) 

Here P is the desired pressure, V is the current  cell 
volume, Vo is its value at zero pressure, and C is a 
constant  to convert  the result to the desired energy 
units. Minimizing the energy of  the model  then pro- 
duces a result with smaller  cell volume. 

The calculated dilation is A V / V o ,  and the volume 
compressibil i ty is - ( A V / V o ) / P .  The  bulk modulus ,  
K, is the reciprocal of  the compressibili ty (Nye,  1957, 
pp. 145-146): 

K = -P / (Z l  V/  Vo). (11) 

Simulating stresses on an orthogonal crystal 

The appl icat ion of  normal  or shearing stresses to an 
or thorhombic ,  tetragonal  or cubic crystal will be con- 
sidered first; and then a general method for use with 
any crystal will be developed.  

To apply  a normal  tension 0"1 along the a axis of  
an or thorhombic  crystal,  we can imagine a weight of  
mass m hung so as to stretch the unit cell along a. 
The stretching force is applied to the area bc, so the 
energy change of  the weight is 

W'ext = - mg  Aa = - (  mg / bc ) bc Aa 
(12) 

=-0" ibc(a-ao) ,  

where 0"1 has the dimensions of  pressure. The external 
energy per  formula  unit is then 

W e x  ' = - 0 " , b c ( a  - ao)/Z.  (13) 

. . . . .  

\ A v  = AAh 

Fig. 1. The application of hydrostatic pressure to crystal X by 
means of an incompressible fluid. The external energy of the 
mass m changes by W'xt = PAy. 

To apply this normal tension to a model, the external- 
energy term is calculated from the desired O'l and the 
current values of  the lattice parameters .  Minimizing 
the total energy produces a model with larger a and 
smaller  b and c values. The computed  strains are 
el = ( A a / a ) ,  e 2 = ( A b / b )  and e 3 = ( A c / c ) ;  and the 
elastic compliance constants,  su, can be calculated 
since e~ = s110.1, e2 = s~20.~ and e3 = s~30.~. Other  com- 
pliance constants  can be obtained by applying stresses 
0.2 and 0.3 along b and c, respectively. 

A similar method can be used to apply a shear 
stress to an or thogonal  crystal. The stress 04, for 
example,  tends to reduce the cell angle a from its 
zero-stress value of  90 °. This stress is s imulated by 
adding the external energy term 

W e x ,  = 0"4 Ao~ V/Z. (14) 

Relaxing the crystal symmetry to monocl inic  (as 
described below) and minimizing the total energy 
produces  a model  with a < 90 °. The shear  strain is 
e4 = - A a ,  and the shear  compliance is s44 = e4/0"4. 

Applying stresses to a general crystal 

By convention ( IEEE,  1978; Nye, 1957, pp. 280-283),  
the physical  properties of  crystals are defined with 
respect to r ight-handed Cartesian axes with the z axis 
parallel to the crystal c axis and with the x axis lying 
in the ac plane. For a general crystal it is convenient  
to prepare  a subrout ine for applying stresses and 
comput ing  strains in terms of  this Car tes ian system. 

Consider  a unit cube in the Cartesian system with 
corners defined by vectors ul, u2, and u3 which form 
the columns of  matr ix U 

U = (u,u2u3) = 1 . (15) 

0 

Let C be the matrix which converts coordinates  from 

I w. . / : /  
I / / w  ..... / / /  

/ / 
/ / 

/ / Vo / / 

, / 

/ I / '~k , / /  

,-V 

Fig. 2. The simulation of hydrostatic pressure. The energy W is 
plotted as a function of the unit-cell volume V. The external 
energy Wex t is added to the crystal energy Wcryst and the total 
energy Wtota I is minimized. The slope of the line for Wex t is 
proportional to the applied pressure. 
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the unstrained crystal system to the standard Car- 
tesian system (see Appendix). Then 

C - t U = C  -l (16) 

describes the unit cube in terms of the unstrained 
crystal axes. The crystal is then strained by changing 
its lattice parameters and the modified matrix, C', can 
be computed. Converting the unit cube back to the 
Cartesian system produces 

U ' =  C'C -1 (17) 

where U' describes the distorted unit cube. The strain 
matrix E is then 

E = U ' - U = U ' -  1. (18) 

Any rotational component of E should be removed 
by computing 

e = ( E + E r ) / 2 ,  (19) 

so that • represents the symmetrical strain tensor with 
elements % (Nye, 1957, p. 97). These elements can 
be expressed in single-subscript form (Nye, 1957, p. 
134): 

t 81 86 8 5 ) /  ElI 2812 2813~ 
86 82 84 = /2821 822 2823 / • (20) 
//:5 84 83 \2831 2832 833/ 

To simulate either a normal tension or a shear stress 
o-i it is only necessary to compute an external energy 
term, 

Wex, = - o'ie, V/Z .  (21 ) 

Here the factor V / Z  is needed to convert from energy 
per unit cube to energy per formula unit. Minimizing 
Wtota I will again result in a crystal with modified 
lattice parameters reflected in the non-zero strain 
tensor e, and the elastic compliance constants can be 
computed as 

S O : 8 j / o r i .  (22) 

In computing elastic constants from these static 
models the effects of thermal motion are being 
ignored, and the distinction between adiabatic and 
isothermal elastic constants is lost. For many 
materials the differences between these two kinds of 
constants can be expected to be less than 0.1% (Nye, 
1957, pp. 187-188). 

and setting the external energy to 

Wext = - E .  AP V/Z .  (24) 

Here qi is the Coulomb charge of an atom or ion with 
coordinates defined by ri. A field El in the positive x 
direction will thus tend to increase the x coordinates 
of positively charged ions and reduce those of nega- 
tive ones. As the energy is minimized under the 
influence of this field, other coordinates and lattice 
parameters may also change, subject to symmetry 
constraints, as described below. 

Difficulties arise if the group of atoms included in 
the summation of (23) initially has a net electric 
moment. One way of avoiding this is to sum over the 
atoms which fall within the boundaries of one unit 
cell. Atoms on the cell faces, edges or corners are all 
included with the appropriate fractional charges. This 
method will work even for polar crystals if the 
arbitrary coordinates of the origin are chosen so that 
the cell boundaries pass through an atom. The charge 
on this atom is then divided among its translational 
equivalents so as to cancel any spontaneous net 
moment. 

If a single component of field is applied, then the 
static dielectric susceptibility tensor elements Xo can 
be calculated from the equation 

APj = KoX,jEi, (25) 

and the dielectric constants are 

K o = 6ij +Xo. (26) 

Here Ko is the permittivity of a vacuum, and 60 is the 
Kronecker delta (Nye, 1957, pp. 68-69). 

For noncentrosymmetric crystals the piezoelectric 
coefficients d o can be computed (Nye, 1957, pp. 115- 
116) from 

8j = d i jE i .  (27) 

Alternatively, the piezoelectric constants for a 
noncentrosymmetric crystal can be determined by 
simulating a stress crj and calculating the change in 
polarization. Then 

APi = doo ). (28) 

If the crystal is originally centrosymmetric the lat- 
tice parameter changes and strain elements ej will be 
zero for small fields. For stronger fields, however, 
they could become appreciable as the model becomes 
noncentrosymmetric. This is the second-order effect 
known as electrostriction. 

Simulating the effect of an electric field 

The effect of an electric field E can be simulated by 
computing the change in polarization 

one 
cell 

A P =  Y~ q , ( r i - r i 0 ) /V  (23) 
i 

Interpolation for constants at zero stress 

In order to get elastic constants free of round-off error 
to a precision of three or four significant figures, it 
is necessary to apply stresses at 0.2 to 0.5 GPa to soft 
crystals such as NaC1 or at 2 to 5 GPa for hard 
materials such as the silicate minerals. Experimental 
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elastic constants, on the other hand, are usually 
obtained by acoustic or dynamic methods in which 
the effective stresses approach zero. It has therefore 
been found useful to make the calculations at two or 
more values of the stress so that the constant at zero 
stress can be found by interpolation. If the effect is 
unsymmetric about zero, as for a normal stress (or 
for an electric field on a noncentrosymmetric crystal) 
then it may be sufficient to make the computation for 
two values of stress, one positive and one negative. 
The zero-stress result is then obtained by linear inter- 
polation. For more precision the calculation can be 
made for four values of the stress, and cubic interpola- 
tion can be used. 

If the effect is symmetric about zero, as for a shear 
stress on an orthorhombic crystal, then only two 
calculations need to be made, and parabolic inter- 
polation will provide the zero-stress result. 

Relaxing symmetry constraints 

In computational modeling of crystals the original 
symmetry is usually maintained in order to keep the 
number of variables small and thus to reduce the 
requirements for computer time and memory size. 
The application of external forces to a crystal often 
reduces its symmetry, however, and it is necessary to 
consider how the symmetry constraints must be 
relaxed. 

The application of hydrostatic pressure generally 
requires no change in the crystal symmetry. The appli- 
cation of a normal or shear stress, however, may 
require lowering of the symmetry consistent with the 
symmetry of the applied force. The point symmetry 
of a normal stress is oo /mmm-  D~h with the axis in 
the direction of the force. This requires the elimina- 
tion of all mirrors or glide planes except those parallel 
or perpendicular to the force. It also requires elimina- 
tion of all rotation and screw axes except those 
parallel to the force and 2 and 2~ axes perpendicular 
to the force. Since mechanical stresses are centrosym- 
metric, any inversion center is permitted to remain. 

The point symmetry of shearing stress 0.4 = tr23 is 
m m m -  D2h with twofold axes along x and bisecting 
y and z. The symmetries of 0-5 and 0-6 are analogous. 
This requires the elimination of all axes except 2 and 
21 axes in these directions. It rules out all mirrors and 
glide planes except those perpendicular to these 
directions. 

The point symmetry of an electric field is 
~ m m - C ~ v .  This requires the elimination of all inver- 
sion centers and all rotation or screw axes not parallel 
to the field. Mirrors or glide planes not parallel to 
the field must also be omitted. 

In deducing the space group of reduced symmetry 
it may be useful to consider first how the point group 
must change. Then a table of subgroups, such as those 
found in the International Tables for Crystallography 

Table 1. Comparison of analytical (I) and numerical 
(II) elastic constants for the LKG model of NaCI 

referred to different axis systems 

Uni t s  a re  10 -14 Pa -~. N o t e  tha t  the  e l a s t i c  t e n s o r  for  these  m o d e l s  
o f  N a C I  has  m o r e  s y m m e t r y  t h a n  is r e q u i r e d  for  g e n e r a l  m o n o c l i n i c  

o r  r h o m b o h e d r a l  c rys ta l s .  

C u b i c  M o n o c l i n i c  R h o m b o h e d r a l  

a' a a (c +a ) /2  
b' b b (a +b ) /2  
c' c ( c -  a) /2 (b + c)/2 
Z 4 2 I 

I II I II 1 II 
s~ 2785 2783 2556 2555 2556 2555 
s22 2785 2783 2785 2783 2479 2479 
s3s 2785 2783 2556 2555 2556 2555 
s12 -745 -744 -745 -744 -592 -592 
$13 -745 -744 -515 -515 -668 -668 
$23 -745 -744 -745 -744 -592 -592 
Saa 6143 6141 6143 6141 6754 6750 
$55 6143 6141 7060 7055 6448 6446 
s66 6143 6141 6143 6141 6754 6750 
si6 0 0 0 0 216 215 
$36 0 0 0 0 --216 --216 
s45 0 0 0 0 -432 -431 

Others 0 0 0 0 0 0 

(1983) or in the report by Neubiiser & Wondratschek 
(1969), may be consulted. 

Tests of the method 

Lincoln, Koliwad & Ghate (1966) (LKG) have pub- 
lished elastic constants which they calculated analyti- 
cally for several well-defined models of the alkali 
halides. As a test of the numerical methods described 
above, we calculated the elastic constants for NaCI 
using the model of LKG which includes only 
Coulomb interactions and nearest-neighbor repul- 
sions. Our calculations were made for NaCI referred 
to three different axial systems as described in Table 
1. The computation in the usual cubic axis system 
produces three independent compliance constants. In 
the monoclinic system, six values were obtained, and 
for the rhombohedral description, eight independent 
constants were calculated. The computations were 
generally made at +0.25 and +0.5 GPa for interpola- 
tion as described above. 

The analytical calculation of LKG was repeated 
for more precision, and values of Ctl = 44.61, c12 = 
16.28 and c44 -- 16.28 GPa were obtained for the three 
stiffness coefficients. These were converted to compli- 
ance constants s u in the cubic system, and the 
appropriate tensor transformations were made to 
express them in the monoclinic and rhombohedral 
systems. These analytical results are given in Table 1 
together with the coefficients obtained numerically. 
The discrepancy is generally less than 0.1%, although 
for two of the smaller values in the rhombohedral 
system it increases to approach 0"3%. We regard this 
as confirmation that the numerical techniques 



WILLIAM R. BUSING A N D  MASANORI MATSUI 537 

described here are capable of producing the same 
calculated values of physical properties as the usual 
analytical methods, which could be cumbersome for 
complicated models. 

ing gij; and g is the determinant of gij, so that gl /2  = V, 
the direct cell volume. Matrix C is then obtained by 
inverting C-' .  

Conclusions 

Methods have been developed for simulating the 
effects of pressure, stress and electric fields on compu- 
tational models of crystals. By minimizing the total 
energy of the system we can compute the effects of 
these external forces on the lattice parameters, atomic 
coordinates, interatomic distances and molecular 
geometry. It should be possible to simulate second- 
order phase transitions which occur under the 
influence of pressure. The same should be true of 
ferroelastic transitions, which may be induced by 
shearing stresses, or of ferroelectric transitions, which 
occur under the influence of an electric field. We can 
calculate the bulk modulus, elastic constants, limiting 
tensile strength, piezoelectric coefficients, and static 
dielectric constants. By applying more than one kind 
of force simultaneously we can obtain higher-order 
elastic constants or the pressure derivatives of the 
elastic or piezoelectric coefficients. 

In forthcoming papers the authors will describe the 
application of these methods to the calculation of the 
elastic constants of the minerals forsterite (the olivine 
form of Mg2SiO4) and diopside (the pyroxene 
CaMgSi206). 

APPENDIX 

Matrix C, for the conversion of coordinates from a 
general crystal system to the IEEE (1978) standard 
Cartesian system, can be expressed in several ways. 
A simple form, analogous to that presented by Rollett 
(1965), is 

 sin cos , !) 
C = b sin a sin "y* . (29) 

\ a  cos/3 b cos a 

With program WMIN we find it convenient to 
compute first the inverse matrix C -I which, expressed 
in the tensor notation of Patterson (1959), is 

( ( g 3 3 i l g g 2 2 ) I / 2 g 2 ' / ( g 2 2 ) ' / 2 0 0 )  

C -I = 0 (g22) I/2 . 

_g13/(gg22g33)l/2 g23/(g22),/2 1/(g33)1/2 

(30) 

Here g~j is the direct metric tensor, which W M I N  
derives from the lattice parameters as 

gq = aiaj cos O~ k ; (31 ) 

gO is the reciprocal metric tensor, obtained by invert- 

References 

BORN, M. & MAYER, J. E. (1932). Z. Phys. 75, 1-18. 
BROWN, G. E. & FENN, P. M. (1979). Phys. Chem. Miner. 4, 83-100. 
BUSING, W. R. (1970). Trans. Am. Crystaliogr. Assoc. 6, 57-72. 
BUSING, W. R. (1972a). J. Chem. Phys. 57, 3008-3010. 
BUSING, W. R. (1972b). Acta Cryst. A28, $252. 
BUSING, W. R. (1981). WMIN. Report ORNL-5747. Oak Ridge 

National Laboratory, Oak Ridge, TN. 
BUSING, W. R. (1982). J. Am. Chem. Soc. 104, 4829-4836. 
BUSING, W. R. (1983). Acta Cryst. A39, 340-347. 
CATLOW, C. R. A. ~¢ MACKRODT, W. C. (1982). In Computer 

Simulation of Solids, edited by C. R. A. CATLOW • W. C. 
MACKRODT, pp. 3--20. New York: Springer-Verlag. 

CATLOW, C. R. A. & NORGETT, M. J. (1973). J. Phys. C, 6, 
1325-1339. 

CATLOW, C. R. A. &, PARKER, S. C. (1982). In Computer Simulation 
of Solids, edited by C. R. A. CATLOW & W. C. MACKRODT, 
pp. 222-240. New York: Springer-Verlag. 

GAVEZZOTI, A. & SIMONETTA, M. (1975). Acta Cryst. A31,645- 
654. 

GIESE, R. F. Jr & DATTA, P. (1973). Am. Mineral. 58, 471-479. 
HALL, D., STARR, T. H., WILLIAMS, D. E. & WOOD, M. K. (1980). 

Acta Cryst. A36, 494. 
HALL, D. & WILLIAMS, D. E. (1975). Acta Crvst. A31, 56-58. 
HULER, E., SHARON, R. & WARSHEL, A. (1977). Quantum 

Chemistry Program Exchange, Vol. I l, program 325. Department 
of Chemistry, Indiana Univ. 

IEEE (1978). Standard 176-1978. The Institute of Electrical and 
Electronic Engineers Inc., New York. 

International Tables for Crystallography (1983). Voi. A. Dordrecht, 
Boston: Reidel. 

KITAIGORODSKY, A. I. (1973). Molecular Crystals and Molecules. 
New York: Academic Press. 

LINCOLN. R. C., KOt.lWAD, K. M. & GHATE, P. B. (1966). Phys. 
Status Solidi, 18, 265-277. (In Table I the values of the Pauling 
coet~cients 13++ a n d / 3  should be interchanged.) 

MATSUI, M. & MATSUMOTO, T. (1982). Acta Cryst. A38, 513-515. 
MATSUI, M. & WATANABE. T. (1981). Acta Cryst. A37, 728-734. 
MIYAMOTO, M. & TAKEDA, H. (1980). Geochem. J. 14, 243-248. 
MOMANY, F. A., CARRUTHERS, L. M. & SCHERAGA, H. A. (1974). 

J. Phys. Chem. 78, 1621-1630. 
MUHLHAUSEN, C. & GORDON, R. G. (1981). Phys. Rev. B, 23, 

900-923. 
NELDER, J. A. & MEAD, R. (1965). Comput. J. 7, 308-313. 
NEUBOSER, J. & WONDRATSCHEK, H. (1969). Maximal Sub- 

groups of the Space Groups. Report. Karlsruhe. 
NYE, J. F. (1957). Physical Properties of Crystals. Oxford: 

Clarendon. 
OHASHI, Y. & BURNHAM, C. W. (1972). J. Geophys. Res. 77, 

576 !-5766. 
PARKER, S. C. (1983). Thesis. TP968, AERE Harwell, Oxfordshire, 

England. 
PATTERSON, A. L. (1959). In International Tables for X-ray Crystal- 

lography, Vol. II, pp. 56-61. Birmingham: Kynoch Press. 
ROLLETT, J. S. (1965). Computing Methods in Crystallography, 

pp. 22-23. Oxford: Pergamon Press. 
ROSENBROCK, H. H. (1960). Comput. J. 3, 175-184. 
SLAUGHTER, M. (1966). Geochim. Cosmochim. Acta, 30, 315-322. 
TADDEI, G., RIGHINI, R. & MANZELLI, P. (1977). Acta Cryst. 

A33, 626--628. 
TIMOFEEVA, T. V., CHERNIKOVA, N. YU. & ZORKII, P. M. (1980). 

Usp. Khim. 49, 966-997; Engl. trans: Russ. Chem. Rev. 49, 
509-525. 

TosI, M. P. & FUMI, F. G. (1964). J. Phys. Chem. Solids, 25, 45-52. 



538 THE APPLICATION OF EXTERNAL FORCES TO MODELS OF CRYSTALS 

WARSHEL, A. (1977). Comput. Chem. 1, 195-202. 
WARSHEL, A. & LEVITT, M. (1982). Quantum Chemistry Program 

Exchange, Vol. l l, program 247. Department of Chemistry, 
Indiana Univ. 

WARSHEL, A. & LIFSON, S. (1970). J. Chem. Phys. 53, 582-594. 
WEIDNER, D. J. & SIMMONS, G. (1972). J. Geophys. Res. 77, 

826-847. 

WILLIAMS, D. E. (1969). Acta Cryst. A25, 464--470. 
WILLIAMS, D. E. (1972). Acta Cryst. A28, 629-635. 
WILLIAMS, D. E. (1979). Quantum Chemistry Program Exchange, 

Vol. 11, program 373. Department of Chemistry, Indiana Univ. 
WILLIAMS, D. E. & STARR, T. L. (1977). Comput. Chem. 1,173-177. 
YUEN, P. S., MURFITI', R. M. & COLLIN, R. L. (1974). J. Chem. 

Phys. 61, 2383-2393. 

Acta Cryst. (1984). A40, 538-544 

Intensity Profile of 
Debye-Scherrer Line from Small Crystallites 

BY T. INO 

Department of Physics, Osaka City University, Osaka, Japan 

AND N. MINAMI 

Department of Physics, Kinki University, Osaka, Japan 

(Received 23 December 1983 ; accepted 26 April 1984) 

Abstract 

The exact intensity formula of the h-line profile from 
small crystallites has been obtained as the orienta- 
tional average of the diffraction intensity of the h 
plane given by Ino & Minami [Acta Cryst. (1979), 
A35, 163-170]. While the formula is expressed as a 
triple integral including a sine Fourier integral, it can 
be expressed asymptotically with respect to the crystal 
size according to the theorem of asymptotic 
expansion of a Fourier integral. Hence the profile can 
be estimated by the sum of terms of single-integral 
type. The first term is of the same type as Wilson's 
formula but it has been shown that second and third 
terms improve considerably the accuracy of the 
asymptotic estimation especially for a very small crys- 
tal. The h-line profile can be successfully calculated 
for quite a small crystal of any shape and any crystal 
system by the asymptotic formula, which can be com- 
puted as easily as Wilson's formula. 

1. Introduction 

The diffraction from the h plane of a single-crystal 
sample is concentrated into a small region of 
reciprocal space b near the reciprocal-lattice point h. 
The intensity profile from a powdered polycrystalline 
sample is given by averaging the intensity distribution. 
function lh(b) over all directions of vector b: 

lh(b) = ]" lh(b) d.Qb/4"n', (1) 

where b is the magnitude of vector b. 
The calculation of the profile was first treated by 

Laue (1926). He gave the intensity from a 

0108-7673/84/050538-07501.50 

parallelepiped crystal having Nj unit cells along the 
aj axis (j  = 1,2, 3) as follows: 

with 

/(b) = IF(b)12G(b), (2) 

G ( b ) =  ]2.[ [sin (rrNjbj)'~ 2 
(3) 

where F(b) is the structure factor and b is expressed 
as b =  blal* +b2a2* +b3a*, a~ being the reciprocal- 
unit-cell vectors. As an approximate function of lh(b) 
for a large crystal he adopted a Gaussian function: 

3 
Ih(b)~--lF(h) 2 [I N~ exp{-TrN~(bj-hj)2}, (4) 

j = l  

where 

h = hlal* + h2a* + h3a3* (h i ,  h2, h3 integers). (5) 

Instead of attempting the evaluation of integral (1), 
he approximated it by an integral over the tangent 
plane to the sphere with radius b at the point bh/Ihl: 

oo oo 

Ih(b) = ~ ~ In(b) db'l db'2/(47rb2), 
--00 --00 

(6) 

where (b'l, b~) are orthogonal coordinates on the 
tangent plane. Finally he derived the intensity profile 
formula as follows: 

Id  b ) ---- IF(h)I2 N, N2N3 

x exp {-¢r(b -Ihl)2/n2}/(4¢rb 2 Vcr/), 
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(7) 


